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Wavy stripes and squares in zero-Prandtl-number convection
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A simple model to explain the numerically observed behavior of chaotically varying stripes and square
patterns in zero-Prandtl-number convection in Boussinesq fluid is presented. The nonlinear interaction of
mutually perpendicular sets of wavy rolls, via higher-order modes, may lead to a competition between the two
sets of rolls. The appearance of square patterns is due to a secondary forward bifurcation from a set of wavy
rolls. The statistics of the spatially averaged energy signal shows a power-law behavior.
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The study of low-Prandtl-number thermal convecti
@1–10# has been long motivated by its importance in ast
physical@1,2# and geophysical@3# problems. It is also usefu
in the study of bifurcation mechanism@4–7#, crystal growth
@8#, metallic liquids @9#, and pattern-forming instabilities
@10#. The hydrodynamics of thermal convection in Bous
inesq fluids is governed by two nonlinearities. The first d
scribes self-interactionv•“v of the velocity fieldv, and the
secondv•“u results from the advection of the temperatu
fluctuationu by the velocity field. The second nonlineari
v•“u may be neglected in the asymptotic limit of ze
Prandtl number@2#. The linearly growing two-dimensiona
~2D! rolls then become the exact solution of the nonline
hydrodynamical equations in the close vicinity of the ins
bility onset, if stress-freeboundary conditions are consid
ered. A nonlinear superposition of mutually perpendicu
sets of 2D rolls also fails to saturate the instability just abo
the onset@5# of zero-Prandtl-number~P! convection. This
makes this limit interesting even from purely theoretic
point of view. Thual@6#, in a quite general 3D direct numer
cal simulations~DNS! of the hydrodynamical equations i
the limit of zeroP, showed for the first time the saturation
the solution. This DNS showed many interesting patte
including the possibility of square patterns for 1.05,r
(5R/Rc),1.7, where the critical Rayleigh numberRc
527p4/4. The mechanism of saturation of the convecti
just above the onset was captured in a simple dynam
system@7#, which agreed well with the results of DNS in it
validity range. This model suggested that 2D rolls underw
self-tunednonlocal wavy instability, which prevents the
temporal growth further. The wavy instability had a wav
length larger than the wavelength of 2D rolls. The mod
showed either chaos or nonsaturation, if the wavelength
the wavy perturbation was chosen same as that of 2D r
The mechanism of selection of square convective cells
observed in the DNS of zero P Boussinesq equations,
mains unexplained.

We present in this paper a simple dynamical syste
which describes the nonlinear interaction between mutu
perpendicular sets of wavy rolls of the same wavelength,
captures the mechanism of the selection of square patter
zero-Prandtl-number Boussinesq fluid. We show that
generation of the vertical vorticity is important in addition
higher-order modes to provide nonlinear coupling amo
mutually perpendicular sets of rolls. This is qualitatively d
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ferent from the case of high-Prandtl-number convection@11#
where nonlinear interaction of two sets of straight rolls m
give rise to square patterns even in the absence of the ver
vorticity. The mutually perpendicular sets of wavy rolls in
teract through distortions in the vertical velocity as well
the vertical vorticity. The nonlinear interaction gives rise
complex convective patterns. A chaotic sequence of w
stripes alongx axis, square patterns, and again wavy strip
along y axis is observed. The generation of square patte
from wavy rolls is via a secondary forward bifurcation.
addition, we also study the statistics of the spatially avera
total energy of the chaotically varying patterns. They sh
power-law behavior. The probability distribution of the tim
elapsedDT between two maxima of the averaged ener
signal is sharply peaked atDT'2.

We consider a thin horizontal layer of fluid of thicknessd,
uniform kinematic viscosityn, and thermal diffusivityk
confined between two conducting boundaries, and heated
derneath. The fluid motion is assumed to be governed
zero-Prandtl-number Boussinesq equations@2,6#, which may
be put in the following dimensionless form:

] t~¹2v3!5¹4v31R¹H
2 u2ê3•“3@~v•“ !v2~v•“ !v#,

~1!

] tv35¹2v31@~v•“ !v32~v•“ !v3#, ~2!

¹2u52v3 , ~3!

where v(x,y,z,t)[(v1 ,v2 ,v3) is the velocity field,
u(x,y,z,t) the deviation in temperature field from the stea
conduction profile, andv[(v1 ,v2 ,v3)5“3v the vortic-
ity field in the fluid. The Rayleigh numberR is defined as
R5a(DT)gd3/nk, wherea is the coefficient of thermal ex
pansion of the fluid,g the acceleration due to gravity, an
DT the temperature difference across the fluid layer. The u
vector ê3 is directed vertically upward. The stress-free co
ducting flat boundary surfaces implyv35]33v35u50 at
x350,1. The symbol¹H

2 5]111]22 stands for the horizonta
Laplacian.

We employ the standard Galerkin procedure to desc
the convective patterns in the form of mutually perpendicu
sets of wavy rolls, and the patterns resulting due to th
nonlinear superposition. The spatial dependence of the v
cal velocity and the vertical vorticity are expanded
©2002 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW E 65 047302
Fourier series, which is compatible with the stress-free
conducting boundaries and periodic boundary conditions
the horizontal plane. As DNS@6# showed standing patterns
all Fourier amplitudes in the expansion are set to be real.
vertical velocityv3 and the vertical vorticityv3 then read as

v35@W101~ t !coskx11W011~ t !coskx2#sinpx3

1W111~ t !sinkx1sinkx2sinpx3

1W112~ t !coskx1coskx2sin 2px3

1@W211~ t !cos 2kx1coskx2

1W121~ t !coskx1cos 2kx2#sinpx3 , ~4!

v35Z100~ t !coskx11Z010~ t !coskx2

1Z111~ t !coskx1coskx2cospx31@Z201~ t !cos 2kx1

1Z021~ t !cos 2kx2#cospx31@Z102~ t !coskx1

1Z012~ t !coskx2#cos 2px31Z210~ t !cos 2kx1coskx2

1Z120~ t !coskx1cos 2kx2 . ~5!

The convective temperature fieldu can be computed easil
from Eq.~3!. The solenoidal property of the velocity and th
vorticity fields determine their horizontal components. P
jecting the hydrodynamical Eqs.~1! to ~3! on these modes
we get a 15-mode dynamical system, which is explici
given in the Appendix. This is a minimum-mode consiste
model for investigating competition between two mutua
perpendicular sets wavy rolls.

There is no fixed points in the form of 2D rolls in th
model as growing straight rolls, with growth ratee53p2(r
21)/2, are exact solutions of the system just above the o
of convection in the absence of the vertical vorticiy. It is ea
to see, although not given explicitly here, that the grow
2D rolls even with second harmonics generated by the
interaction of the critical modeW101 are also exact solution
of the system. The square solutions, in the absence of
vorticity field, may be described by only three mod
W101,W011, and W112. The modeW211, which is usually
small, is ignored for this analytic argument. The square fix
points (X1

25X2
2) are then described by the root of the equ

tion X1
253p2(27r 2500)(r 21)/5. For 1,r ,500/27, there

is no real root showing the non-existence of the square fi
points. Numerical integration of the six-mode model~see the
Appendix! in the absence of the vertical vorticity but includ
ing the modeW211 does not show saturation of the instab
ity. This shows the importance of the vertical vorticity for th
exchange of energy between two sets of rolls.

We now numerically integrate this dynamical system
investigate the unsteady solutions. As we are intereste
solutions near the instability onset, we setk5kc5p/A2. For
each value ofr, we integrate with randomly chosen initia
conditions for long periods to get rid of transients. We raisr
in small steps ofDr (50.01) and repeat the above procedu
We get chaotic solutions for 1.11<r<1.42, which are in
qualitative agreement with the DNS@6#. We observe wavy
rolls oscillating chaotically forr ,1.11, and forr>1.11 a
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chaotic sequence of wavy rolls alongx axis, squares, and
wavy rolls alongy axis. We have also repeated the abo
procedure by loweringr in small steps. The model does n
show any hysteresis. The bifurcation is forward.

Figure 1 shows the bifurcation from one set of wavy ro
to two sets of wavy rolls. The competition between these t
sets of mutually perpendicular rolls leads to chaotic seque
of patterns. The pictures in the first column show the proj
tion of the phase space inW0112W101 plane for r 51.10
~top! and forr 51.11~bottom!. There is only one set of rolls
for r<1.10 and two sets of mutually perpendicular rolls f
r>1.11. The second column shows time evolution of 2D r
modes. While the modeW011 varies chaotically, the mode
W101 remains zero forr<1.10 ~top!. The dynamics is more
complex forr>1.11 ~bottom! as two sets of wavy rolls are
excited. The new 2D roll modeW101 excited at the onset o
the secondary instability is also chaotic in time. This is
interesting example of forward bifurcation from one chao
solution to another.

Figure 2 shows the time evolution of the chaotic patte
for r<1.10. The thermal isotherms of the patterns show v
ous structures in time, but they essentially remain along
ther x or y axis depending on the initial conditions. The cu
vature of the isotherms depends on the values ofW111

2

1W211
2 , which is a measure of the wave energy. Figure

shows various textures of the patterns just above the sec
ary instability atr 51.10460.002 . Two sets of wavy rolls
are competing via a nonlinear interaction between them.
isotherms of DNS@6# also show wavy character of the rolls
The oscillating square pattern is the result of the competit
between two sets of rolls. Notice that the square pattern
Fig. 3 consists of two sets of squares. A small~big! square
has four big~small! squares as its nearest neighbors. T
feature of the square pattern is qualitatively new.

Figure 4 summarizes the results of the statistical anal

FIG. 1. Bifurcation from one set of chaotic rolls to two sets
chaotic rolls. The first column shows the projection of the pha
space of the model on theW0112W101 plane for r 51.10 ~above!
andr 51.11~below!. The second column shows the variation of t
2D roll modes with time.
2-2
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BRIEF REPORTS PHYSICAL REVIEW E 65 047302
of the energy signal of the model just above the onse
secondary instability. The spatially averaged total energy^E&
~equal to 1

2 ^v1
21v2

21v3
2&x1 ,x2 ,x3

) is chaotic ~top left! long
after the transients die out. The signal shows the behavio
a chaotic relaxation oscillator. The histogram~top right!
shows the variation ofNi , which is the number of times th
i th energy bin with mean energyEi has been visited by the
spatially averaged energy signal, as a function ofEi . The
signal for this purpose is recorded for a period approxima
2000 times the viscous time scale. We recorded four differ
signals generated with different initial conditions. In ea
case, data for transients for approximately 200 times the
cous time scale is dropped. The histogram shows n
Gaussian nature of the spatially averaged energy of the

FIG. 2. Chaotic sequence~a!–~c! of isotherms for rolls with
various wave energies atr 51.10. The variation ofW111

2 1W211
2 ,

which is a measure of wavy energy, with dimensionless time
shown in the left lower box. The values ofW111

2 1W211
2 for the

isotherms~a!–~c! are 0.0, 0.660, and 6.735, respectively.

FIG. 3. Chaotic sequence of competing rolls and squares fr
51.11 arranged clockwise, starting from top left, with increas
time.
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terns. The frequencyNi scales with energy asEi
2a with a

52.8060.02 ~see right bottom of Fig. 4!. Various symbols
stand for four different energy signals. The probability d
tribution of the time elapsedDt between two maxima of the
energy signal is shown at the left bottom of Fig. 4. T
probability distribution peaks atDt'2. This means that the
system reaches its maximum energy state at almost reg
intervals, although the maximum energy itself varies qu
irregularly.

We have presented in this paper a simple model that
plains the mechanism responsible for generation of squ
patterns in zero-Prandtl-number Boussinesq fluids. As
Rayleigh number is raised above a critical value, one se
chaotic wavy rolls becomes unstable. Another set of wa
rolls is generated in a direction perpendicular to the form
one. The nonlinear superposition of these two sets of w
rolls gives rise to squares and other complex patterns.
secondary bifurcation is forward. The excitation of the v
tical vorticity is responsible for the wavy nature of rolls. Th
wavy motion stops the unlimited growth of the patterns. T
nonlinear modes, which depend on both the horizontal co
dinates, facilitate the exchange of energy between two se
wavy rolls. The spatially averaged total energy, varying c
otically as a relaxation oscillator, is highly non-Gaussian
shows a power law behavior. Although the maximum ene
of the system varies very erratically, the maximum ene
state is reached by the system almost regularly.

We are thankful to S. Fauve~ENS, Paris! and M. K.
Verma~IIT, Kanpur! for enlightening discussions. This wor
was supported by DST, India, under the project ‘‘Patte
forming instabilities and interface waves.’’

s

FIG. 4. Statistics of the total energy forr 51.11. The spatially
averaged energŷE& ~top left! shows chaotic variation long afte
transients die out. The histogram~top right! of a very long signal
('2000 viscous time scale! shows the strong non-Gaussian beha
ior. The slope of the power law regime is522.806.02 ~bottom
right! for four different signals. The probability distribution of th
time elapsedDt between two maxima of the averaged energy of
patterns shows a sharp peak aroundDt'2.0 ~bottom left!.
2-3
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APPENDIX: THE MODEL

Ẋ5
3p2

2
~r 21!X1

p

24
~X i2Y!T2

1

30p
~10z15f1c!h

2
2

15p S x2c2

x1c1
D 1

1

60S 10z1115f113c1

210z2215f223c2
DS,

Ṡ5
p2

16
~27r 232!S2@~10z11c115f1!~10X123Y2!

1~10z21c215f2!~10X223Y1!#/100,

Ṫ5
p2

100
~27r 2500!T2

p

500
~300X1X2163Y1Y2!1

13p

50
X•Y

1
3

40
~x12x2!S2

1

10p
~x11x2!h2

2

25p
@c1f21c2f1

110~z2f12z1f2!#,

Ẏ5
p2

98
~135r 2343!Y2

1

70p
~5fi19c i110z i!h

1
p

280
~310X163Yi!T1

3

28S f21c216z2

2f12c126z1
DS

2
2

35p S 4x2c115x1f1110z1x1

4x1c215x2f2110z2x2
D ,

ż52
p2

2
z1

p

80F ~10X2Y i!h120fiT1pS 10X113Y2

210X223Y1
DS

12S 2x1Y125x2X2

2x2Y225x1X1
D G ,
o

le

J
.
.

I
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ḣ522p2h1
p

2
~2z13f2c!•X1

p

8
~x11x2!T

2
p

20
@~6z227f21c2!Y11~6z127f11c1!Y2#,

ċ52
5p2

2
c1

p

40F35hX150fiT1
13

2
hY i

1
p

2 S 9Y2210X1

10X229Y1
DS1S 40x1X2111x2Y1

40x2X1111x1X2
D G ,

ḟ52
9p2

2
f1

p

4
~2z i2c i !T1

p

40F S 9

2
Y25XDh

1
p

2 S 210X123Y2

10X213Y1
DS1S 2x1Y1215x2X2

2x2Y2215x1X1
D G ,

ẋ523p2x1
p

10S 15f2X112f1Y11c2Y2

15f1X212f2Y21c1Y1
D

1
3p

8 S h2pS

h1pSDT1
p

5 S 5z2X112z1Y1

5z1X212z2Y2
D ,

where X[(X1 ,X2) t5(W101, W011)
t, Y[(Y1 ,Y2) t

5(W211,W121)
t, S5W111, T5W112, z[(z1 ,z2) t

5(Z010,Z100)
t, f[(f1 ,f2) t5(Z012,Z102)

t, c[(c1 ,c2) t

5(Z210, Z120)
t, x[(x1 ,x2) t5(Z201, Z021)

t, and h5Z111.
The superscriptt stands for the transpose of a matrix. An
two column vectorsCi5(C2 ,C1) t andC5(C1 ,C2) t have
their elements interchanged.
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