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Wavy stripes and squares in zero-Prandtl-number convection
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A simple model to explain the numerically observed behavior of chaotically varying stripes and square
patterns in zero-Prandtl-number convection in Boussinesq fluid is presented. The nonlinear interaction of
mutually perpendicular sets of wavy rolls, via higher-order modes, may lead to a competition between the two
sets of rolls. The appearance of square patterns is due to a secondary forward bifurcation from a set of wavy
rolls. The statistics of the spatially averaged energy signal shows a power-law behavior.
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The study of low-Prandtl-number thermal convectionferent from the case of high-Prandtl-number convecfitit]
[1-10] has been long motivated by its importance in astro-where nonlinear interaction of two sets of straight rolls may
physical[1,2] and geophysicdl3] problems. It is also useful give rise to square patterns even in the absence of the vertical
in the study of bifurcation mechanisp4—7], crystal growth  vorticity. The mutually perpendicular sets of wavy rolls in-
[8], metallic liquids [9], and pattern-forming instabilities teract through distortions in the vertical velocity as well as
[10]. The hydrodynamics of thermal convection in Bouss-the vertical vorticity. The nonlinear interaction gives rise to
inesq fluids is governed by two nonlinearities. The first de-complex convective patterns. A chaotic sequence of wavy
scribes self-interaction - Vv of the velocity fieldv, and the  stripes along axis, square patterns, and again wavy stripes
secondv - V 4 results from the advection of the temperaturealongy axis is observed. The generation of square patterns
fluctuation @ by the velocity field. The second nonlinearity from wavy rolls is via a secondary forward bifurcation. In
v-V6é may be neglected in the asymptotic limit of zero addition, we also study the statistics of the spatially averaged
Prandtl numbef2]. The linearly growing two-dimensional total energy of the chaotically varying patterns. They show
(2D) rolls then become the exact solution of the nonlineaPower-law behavior. The probability distribution of the time
hydrodynamical equations in the close vicinity of the insta-elapsedAT between two maxima of the averaged energy
bility onset, if stress-freeboundary conditions are consid- Signal is sharply peaked &T~2.
ered. A nonlinear superposition of mutually perpendicular We consider a thin horizontal layer of fluid of thickneks
sets of 2D rolls also fails to saturate the instability just aboveuniform kinematic viscosityv, and thermal diffusivity «
the onset[5] of zero-Prandtl-numbe(P) convection. This confined between two conducting boundaries, and heated un-
makes this limit interesting even from purely theoreticalderneath. The fluid motion is assumed to be governed by
point of view. Thual6], in a quite general 3D direct numeri- zero-Prandtl-number Boussinesq equatigh§], which may
cal simulations(DNS) of the hydrodynamical equations in be put in the following dimensionless form:
the limit of zeroP, showed for the first time the saturation of .
the solution. This DNS showed many interesting patterns di(V2v3)=V*3+RVE0—6 VX[(0-V)v—(v- V)],

including the possibility of square patterns for 1<05 (1)
(=R/IR.)<1.7, where the critical Rayleigh numbeR,

=277%4. The mechanism of saturation of the convection Giw3=V2ws+[ (@ V)vz—(v-V)ws], 2
just above the onset was captured in a simple dynamical

system[7], which agreed well with the results of DNS in its V20=—vs, 3

validity range. This model suggested that 2D rolls underwent . . .
self-tunednonlocal wavy instability, which prevents their Where v(x.y,zt)=(v1,v5,v3) is the velocity field,
temporal growth further. The wavy instability had a wave- ¢(x:¥.2t) the deviation in temperature field from the steady
length larger than the wavelength of 2D rolls. The modelconduction profile, andv=(w,,w,,w3)=V Xv the vortic-
showed either chaos or nonsaturation, if the wavelength ofy field in thse fluid. The Rayleigh numbeR is defined as
the wavy perturbation was chosen same as that of 2D roll= @(AT)gd"/vk, wherea is the coefficient of thermal ex-
The mechanism of selection of square convective cells, ag&nsion of the fluidg the acceleration due to gravity, and
observed in the DNS of zero P Boussinesq equations, rAT the temperature difference across the fluid layer. The unit

mains unexplained. vectore; is directed vertically upward. The stress-free con-
We present in this paper a simple dynamical systemgucting flat boundary surfaces implys=dsv3=60=0 at
which describes the nonlinear interaction between mutuallxs=0,1. The symboWZ=d,;+ d,, stands for the horizontal
perpendicular sets of wavy rolls of the same wavelength, andaplacian.
captures the mechanism of the selection of square patterns in We employ the standard Galerkin procedure to describe
zero-Prandtl-number Boussinesq fluid. We show that théhe convective patterns in the form of mutually perpendicular
generation of the vertical vorticity is important in addition to sets of wavy rolls, and the patterns resulting due to their
higher-order modes to provide nonlinear coupling amongionlinear superposition. The spatial dependence of the verti-
mutually perpendicular sets of rolls. This is qualitatively dif- cal velocity and the vertical vorticity are expanded in
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Fourier series, which is compatible with the stress-free flat 80 80
conducting boundaries and periodic boundary conditions in Wor1
the horizontal plane. As DN§5] showed standing patterns, M !A AM N
all Fourier amplitudes in the expansion are set to be real. The 0 O’W W W : WV l
vertical velocityv ; and the vertical vorticityws then read as 1 1 \
w
101
v3=[ Wips(t)coskx, +Wqq4(t)coskxs,]sin mx - -
3= [Wiyoa(t) 1 o11(t) 2] 3 1 891 0 " é 800 25 50
+ W, 4(t)sinkx; Sinkx,Sin X s
111(t) 1 2 3 =° g5 g 90
+ Wy At)coskx;coskx,Sin 27X a
+[Woq4(t)cos Z&x;coskX, 0 «
+ W ,4(t) coskx;cos XKx, [sin Xz, 4
w3=Z 100 t)COSKX; + Zg1(ft) COSKX; R w © s % 25 50
101 —> time —»

+Z414(t)coskx,€c0skx,C0SmX3+ [ Zogq(1) COS KXy

FIG. 1. Bifurcation from one set of chaotic rolls to two sets of

+Zoa(t)cos ZKxp]cosmxz+[Z10i 1) COSKX, chaotic rolls. The first column shows the projection of the phase

+ Zo1A1) COSKX,]COS 2mmX3+ Z1o( 1) COS KX, COSK X, space of the model on thé/y;,— W, plane forr=1.10 (above
andr =1.11(below). The second column shows the variation of the
+Z 159 t)coskx,cos XX, . (5) 2D roll modes with time.

The convective temperature fieltlcan be computed easily
from Eg.(3). The solenoidal property of the velocity and the .
vorticit)c/] fields determine theﬁr P?orizyontal compongnts. Pro-Vavwy rolls alongy axis. We have also repeated the above
jecting the hydrodynamical Eq¢l) to (3) on these modes, procedure by Iowermg N S”.‘a” stgps._The model does not
we get a 15-mode dynamical system, which is explicitlyShOW any hysteresis. The bifurcation is forward.
given in the Appendix. This is a minimum-mode consistent Figure 1 shows the bifurcation fror.n. one set of wavy rolls
model for investigating competition between two mutually 0 tWO Sets of wavy roIIs..The competition between these two
perpendicular sets wavy rolls. sets of mutually perpendicular rolls leads to chaotic sequence
There is no fixed points in the form of 2D rolls in this Of patterns. The pictures in the first column show the projec-
model as growing straight rolls, with growth raée=37%(r  tion of the phase space W13~ W0, plane forr=1.10
—1)/2, are exact solutions of the system just above the onsétop) and forr =1.11 (bottom. There is only one set of rolls
of convection in the absence of the vertical vorticiy. It is easyfor r=<1.10 and two sets of mutually perpendicular rolls for
to see, although not given explicitly here, that the growingr=1.11. The second column shows time evolution of 2D roll
2D rolls even with second harmonics generated by the selinodes. While the mod#&V,,; varies chaotically, the mode
interaction of the critical mod®;,, are also exact solutions W, ,, remains zero for <1.10 (top). The dynamics is more
of the system. The square solutions, in the absence of theomplex forr=1.11 (bottom as two sets of wavy rolls are
vorticity field, may be described by only three modesexcited. The new 2D roll mod#/,o; excited at the onset of
Wi01,Wo11, and Wyq,. The modeW,,;, which is usually the secondary instability is also chaotic in time. This is an
small, is ignored for this analytic argument. The square fixednteresting example of forward bifurcation from one chaotic
points (X=X3) are then described by the root of the equa-solution to another.
tion X3=372(27r —500)(r —1)/5. For 1<r<500/27, there Figure 2 shows the time evolution of the chaotic patterns
is no real root showing the non-existence of the square fixetbr r<1.10. The thermal isotherms of the patterns show vari-
points. Numerical integration of the six-mode mo¢&de the ous structures in time, but they essentially remain along ei-
Appendi in the absence of the vertical vorticity but includ- therx or y axis depending on the initial conditions. The cur-
ing the modéW,,, does not show saturation of the instabil- vature of the isotherms depends on the values\/\liit11
ity. This shows the importance of the vertical vorticity for the +W.,3,, which is a measure of the wave energy. Figure 3
exchange of energy between two sets of rolls. shows various textures of the patterns just above the second-
We now numerically integrate this dynamical system toary instability atr =1.104+0.002 . Two sets of wavy rolls
investigate the unsteady solutions. As we are interested igre competing via a nonlinear interaction between them. The
solutions near the instability onset, we ketk.=7/\/2. For  isotherms of DNS6] also show wavy character of the rolls.
each value ofr, we integrate with randomly chosen initial The oscillating square pattern is the result of the competition
conditions for long periods to get rid of transients. We raise between two sets of rolls. Notice that the square pattern in
in small steps ofAr (=0.01) and repeat the above procedure.Fig. 3 consists of two sets of squares. A sn{aib) square
We get chaotic solutions for 1.Elr<1.42, which are in has four big(smal) squares as its nearest neighbors. This
qualitative agreement with the DN[B]. We observe wavy feature of the square pattern is qualitatively new.
rolls oscillating chaotically for<1.11, and forr=1.11 a Figure 4 summarizes the results of the statistical analysis

chaotic sequence of wavy rolls alongaxis, squares, and
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FIG. 2. Chaotic sequenc@)—(c) of isotherms for rolls with
various wave energies at=1.10. The variation ofW2,,+W3,,,
which is a measure of wavy energy, with dimensionless time i
shown in the left lower box. The values &2 ,+Ws3,, for the
isotherms(a)—(c) are 0.0, 0.660, and 6.735, respectively.

FIG. 4. Statistics of the total energy for=1.11. The spatially
getveraged energyE) (top lef) shows chaotic variation long after
transients die out. The histograftop righy of a very long signal
(=~2000 viscous time scalshows the strong non-Gaussian behav-
ior. The slope of the power law regime is—2.80+.02 (bottom
right) for four different signals. The probability distribution of the
of the energy signal of the model just above the onset ofime elapsedit between two maxima of the averaged energy of the
secondary instability. The spatially averaged total enéE)y  patterns shows a sharp peak arourtd-2.0 (bottom lef.
(equal to 3(vi+v5+v5)x x,.x,) IS Chaotic(top lefy long
after the transients die out. The signal shows the behavior of
a chaotic relaxation oscillator. The histograftop right  terns. The frequenciN; scales with energy al; “ with o
shows the variation of; , which is the number of times the =2.80+0.02 (see right bottom of Fig. ¥ Various symbols
ith energy bin with mean enerdy, has been visited by the stand for four different energy signals. The probability dis-
spatially averaged energy signal, as a functiorEpf The  tribution of the time elapsedt between two maxima of the
signal for this purpose is recorded for a period approximatelyenergy signal is shown at the left bottom of Fig. 4. The
2000 times the viscous time scale. We recorded four differenprobability distribution peaks ait~2. This means that the
signals generated with different initial conditions. In eachsystem reaches its maximum energy state at almost regular
case, data for transients for approximately 200 times the vigntervals, although the maximum energy itself varies quite
cous time scale is dropped. The histogram shows noriregularly.
Gaussian nature of the spatially averaged energy of the pat- We have presented in this paper a simple model that ex-
plains the mechanism responsible for generation of square
patterns in zero-Prandtl-number Boussinesq fluids. As the
Rayleigh number is raised above a critical value, one set of
O O chaotic wavy rolls becomes unstable. Another set of wavy
rolls is generated in a direction perpendicular to the former
one. The nonlinear superposition of these two sets of wavy
O O rolls gives rise to squares and other complex patterns. The

secondary bifurcation is forward. The excitation of the ver-

tical vorticity is responsible for the wavy nature of rolls. The
wavy motion stops the unlimited growth of the patterns. The
nonlinear modes, which depend on both the horizontal coor-
dinates, facilitate the exchange of energy between two sets of
wavy rolls. The spatially averaged total energy, varying cha-
otically as a relaxation oscillator, is highly non-Gaussian. It
shows a power law behavior. Although the maximum energy
of the system varies very erratically, the maximum energy
state is reached by the system almost regularly.

N

7,

.

\>\\%
f\\ We are thankful to S. FauvéENS, Pariy and M. K.
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APPENDIX: THE MODEL
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two column vectoraP'= (¥, ¥,)' andW=(¥,,¥,)" have

The superscript stands for the transpose of a matrix. An
(2X1Y1_5X2X2” P b P y
their elements interchanged.

2x2Y,=5x1 X1
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